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The main source of energy supply worldwide is generated from

fossil fuels, which undoubtedly are finite and non-

environmental friendly resources. Bioethanol generated from

edible resources also has economic and environmental

concerns. Despite the immense attention to find an alternative

(inedible) source of energy in the last two decades, the total

commercial production of 1st generation biofuels is limited and

equivalent only to approximately 3% of the total road transport

fuel consumption. Lignocellulosic waste represents the most

abundant biomass on earth and could be a suitable candidate

for producing valuable products including biofuels. However,

cellulosic bioethanol has not been produced on a large scale

due to the technical barriers involved that make the commercial

production of cellulosic bioethanol not economically feasible.

This review examines some of the current barriers to

commercialization of the process.
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Introduction
One of the main contemporary issues facing society today

is the development of sustainable energy from cheap,

abundant and non-edible materials to enable its commer-

cialization before the main energy sources are depleted.

Throughout the twentieth century, fossil fuels (crude oil,

coal and natural gas) were heavily exploited as the main

source of energy. Currently, the main source (80–88%) of
Current Opinion in Biotechnology 2016, 38:190–197 
energy supply worldwide is generated from fossil fuels,

which undoubtedly are finite and exhaustible resources

and their current rate of consumption cannot be sustained

in the long term [1,2,3��].

The majority of fossil fuel consumption is used in the

transportation sector (60–65%) which is expected to in-

crease dramatically as the world population increases [2,4].

In 2008, there were about 700 million light duty vehicles,

automobiles, light trucks and minivans being driven on

roadways around the world. This number is expected to at

least double (to 1.3 billion vehicles by 2030) or perhaps

triple (over 2 billion vehicles) by 2050. Although short-term

prices of oil have currently dropped, the projected gap

between the universal crude oil demand and the total

actual production is probably to increase rapidly in future

years leading once again to skyrocketing prices of fossil

fuels in the long term. Furthermore, the overconsumption

of these finite resources has also significantly contributed to

security concerns of the oil supply and environmental

pollution worldwide [5]. For example, transport vehicles

account for a substantial percentage of air pollution glob-

ally, from each gallon of gasoline being burnt or used by a

vehicle, about 8.16 kg of carbon dioxide (CO2) is emitted.

The adverse effects of using fossil fuels as the main source

of energy are well documented and include environmental

pollution such as increasing global carbon dioxide (CO2)

emissions [6].

It is not only that fossil fuels are the main source of air

pollution, open-field burning of lignocellulosic waste

(LCW) is a globally common practice as it represents a

cheap, fast and practical means of preparing the field for

the next crop. Air emissions from the burning process of

wood, crop residues and other lignocellulosic biomass are

not only a threat to public health but also wasting our

natural resources. The burning process reduces the local

air quality, creating a variety of health concerns from the

discharge of carcinogenic oxides (NOx, SO2 and COx) into

the atmosphere leading to asthma or pulmonary morbidi-

ty in humans. It has been estimated that annual emissions

from open-field burning of lignocellulosic biomass were

approximately 0.37 Tg of SO2, 2.8 Tg of NOx, 1100 Tg of

CO2, 67 Tg of CO and 3.1 Tg of methane (CH4) [2,4,7,8].

Reducing the accumulated, atmospheric CO2 concentra-

tion can be achieved whether by reducing the use of fossil

fuels or utilising LCW in a more environmentally friendly

manner [7]. The pressure on society to find suitable,
www.sciencedirect.com
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renewable, less polluting and cheap sources of bioenergy

and the desire to promote domestic rural economies are

substantially increasing globally [4]. Therefore, there is

an immense interest in the production of renewable

biofuels from sustainable, cheap, plentiful and clean

resources such as lignocellulosic biomass. A gradual shift

from exhaustible fuels to sustainable biofuels will not

only reduce the reliance on finite and expensive oil

imports but will also help to maximise economic, envi-

ronmental and social benefits [2,8].

Production of bioethanol from edible
resources
Biofuels are derived from different sustainable feedstocks

such as edible sugar or starch-based crops (corn in the

USA and sugarcane in Brazil) and non-edible resources

such as LCW which represent first and second genera-

tions of bioenergy substrates respectively [9]. Bioethanol

produced from the 1st generation biofuels can be blended

with current petroleum-based fuels either as a 10% (v/v)

blend up to an 85% (v/v) blend, as well as being used as a

pure hydrated ethanol [2,8,10]. The superior character-

istics of edible bioethanol in the transportation sector

also make it an excellent biofuel and suitable source for

current and future advanced vehicles without major mod-

ifications [5,8].

Bioethanol has already been produced commercially in

Brazil and the US beginning in 1975 using different

edible feedstocks (sugarcane and corn respectively),

and despite the problems associated with these bioenergy

resources, it is still among the most promising renewable

biofuels mainly for the transportation sector [8]. Although

the 1st generation of biofuels offers great potential com-

mercially as an alternative, sustainable, less polluting

source compared to fossil fuel, it has considerable eco-

nomic, food security and environmental limitations. The

first generation of biofuels appears unsustainable on the

basis of food-based feedstocks like corn, sugarcane or

wheat as raw material, as it raises major nutritional and

ethical concerns. Therefore, the first generation of bio-

fuels (from edible resource) has been considered as
Table 1

Composition and potential of edible and non-edible feedstocks for bi

Biofuel

resources

Carbohydrates (%) Residue:crop

ratio m

Cellulose Hemicellulose Lignin (%)

Wheat straw 32.9–50 24–35.5 8.9–17.3 1.3 

Wheat 35.85 NA 

Rice straw 36.2–47 19–24 9.9–24 1.4 

Rice 87.5 NA 

Sugarcane straw 40–41.3 27–37.5 10–20 0.6 

Sugarcane 67 NA 

Corn stalks 35–39.6 16.8–35 7–18.4 1.0 

Corn 73.7 0.6 
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socially flawed, as more than 800 million people suffer

from hunger and starvation [11–13]. Moreover, the cur-

rent production of 1st generation biofuels (less than

840 thousand barrels per day), although it has increased

sevenfold since 2000, met only 2.3% of the total final

transportation fuel demands [8]. Therefore, other cheap,

plentiful and untapped feedstocks are urgently required

for long term production [13].

Potential of LCW for biofuel production
Compared to fossil fuels, LCW are geographically evenly

distributed globally and abundantly available. It was

estimated that the annual production of these materials

ranged between 10 and 50 billion tonnes worldwide,

accounting for about half of the global biomass yield

[3��,14,15]. Lignocellulosic material represents the most

abundant biomass on earth and could be a suitable

candidate for producing valuable products including bio-

fuels. However, cellulosic bioethanol has not been pro-

duced on large scale due to the technical barriers involved

such as commercial feasibility of lignocellulose biodegra-

dation into fermentable sugars.

Wheat straw and rice straw are by far the most abundant

agricultural wastes globally. The annual average produc-

tion of wheat, rice and sugarcane straw worldwide is 354,

731 and 181 million tonnes, respectively (Table 1) [16].

Globally about 200 billion tonnes of plant biomass are

produced annually and more than 90% of the total pro-

duction of plant biomass is classified as LCW [17]. These

waste materials are often available at very low cost and as

a cheap substrate for commercial biofuel production.

Previous studies suggest that LCW can be an ideal

feedstock for biofuel production [8,16,18–21]. Different

types of lignocellulosic residues could be used for biofuels

production such as straws, crop residues, wood pellets,

wood chips and agro-waste [22��,23�].

Because of the low price, availability throughout the year

and wide distribution geographically, LCW is considered

not only the most feasible option for biofuel production but

also for fossil fuel replacement since these raw materials do
oethanol production

Dry

atter (%)

Average of worldwide

production (1997-2001

in million tonne)

Bioethanol production

potential (L per tonne

of dry biomass)

Reference

90.1 354.34 280–290 [8,24–28]

89.1 594.01 340–400

88.0 731–900 280

88.6 590.87 430–480

71.0 180.73 280

26.0 1266.60 70–500

78.5 203.61 225.7–290

86.2 603.30 360–460
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not compete with food crops and have the significant

potential of bioethanol productivity compared to edible

resources (Table 1). For instance the bioethanol produc-

tion from wheat straw (inedible) is expected to be 290 L/

1000 kg of dry biomass compared to edible bioethanol

generated from wheat 340 L/1000 kg of dry biomass

(Table 1) [8,24–28]. LCW has the potential capability to

produce about 4.19 E+11 litres (419 GL) of bioethanol

annually [27]. An earlier estimate reported that the poten-

tial ethanol that could be derived from corn stover alone in

the US was 15 billion litres per year.

Technical obstacles involved in the
biodegradation of lignocellulosic biomass
Despite the fact that cellulosic biofuels offer great promise

as cheap, sustainable feedstock supplies, conflict-free with

food production, environmentally friendly and above all

able to reduce the world’s dependence on expensive fossil

fuels, producing cellulosic bioethanol from LCW presently

is not commercially feasible [10]. Cellulosic biofuels can-

not yet be produced economically on a large scale because

there are a number of technical barriers which make the

operational and production costs ineffective commercially
Figure 1
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[9,29]. A major current limitation of the cellulosic bioetha-

nol at the commercial scale is the complete biodegradation

of lignocellulosic biopolymers components into reducing

sugars [4,10,11,30]. The three main components of LCW

are cellulose, hemicellulose and lignin (Figure 1). Ligno-

cellulosic biomass is mainly composed of structural carbo-

hydrates in biopolymer forms (such as cellulose and

hemicellulose) and non-carbohydrates polymer (such as

lignin) [31,32]. These three components of lignocellulosic

biomass (containing 55–75% carbohydrates), create a het-

erogeneous complex of carbohydrate polymers (cellulose

and hemicellulose), and lignin (which imparts further

strength), to form a tightly packed, tough and complex,

water-insoluble structure that is resistant to depolymerisa-

tion by microbial and chemical attack [33–35].

Pre-treatment of lignocellulosic biomass
Cellulose is coated or sheathed by hemicellulose which

acts as a blocking seal limiting the access of cellulase and

hemicellulase enzymes to the cellulose–hemicellulose

complex [36]. In addition, the polysaccharide biopoly-

mers (cellulose–hemicellulose complexes) are encapsu-

lated with lignin which forms a physical barrier that
s
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increases resistance to chemical and microbial attack and

hinders polysaccharide polymer hydrolysis into reducing

sugars [33,34,37]. Therefore, a pre-treatment step is re-

quired to enhance the digestibility of lignocellulosic

material effectively. There are many biological, chemical,

physio-chemical and physical processes used singly or in

combination for the pre-treatment of lignocellulosic bio-

mass. The effects of different pre-treatments on the

physical and chemical composition of lignocellulose are
Table 2

Different pre-treatment methods of lignocellulosic waste

Pre-treatment Energy source Effect 

Physical Mechanical (milling,

grinding or chipping)

Wet, dry, vibratory and

compression milling

Comminution (ball mill,

colloid, hammer,

compression)

Irradiation (electron beam,

gamma-ray, microwave)

Electric (pulsed electrical

field) and sonication

Disrupt plant cells, i

pore sizes

Decrease particle si

cellulose crystallinity

Soften and partially

depolymerize lignin

Partially alter the str

cellulose and hemic

Chemical Organosolvent using

different solvents

Acid and alkaline

hydrolysis

Oxidation using oxidising

agents

Extract lignin and im

hydrolysis

Decrease the crysta

cellulose

Digests lignin matrix

Makes cellulose and

hemicellulose more

accessible

Disrupt cell wall com

Physio-chemical Steam explosion or auto

hydrolysis

Ammonia fibre explosion

(AFEX)

Steam explosion or using

hot water (liquid hot water)

CO2 explosion

Makes biomass mor

accessible to cellula

Improve the efficien

downstream proces

High recovery of xyl

65%)

Biological Microbe (bacteria, fungi

and actinomycetes)

White-rot fungi

(Basidiomycetes or

Ascomycetes)

Solid state delignification

or submerged state

Enzymatic delignification

processes using

ligninolytic enzymes

Selective in lignin an

hemicellulose biode

Disturbing the three

components and alt

remove of hemicellu

lignin

Disrupt lignin polym

Facilitate the biocon

process

Increased number o

Cellulose and hemic

are expected to rem
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well-reviewed (see Table 2) but no pre-treatment process

has yet proven to be generally applicable [34,38].

Conversion of lignocellulosic biomass into
reducing sugars
Coupled with optimising an efficient pre-treatment

method, LCW must then undergo (chemically or biologi-

cally) hydrolysis, the saccharification of lignocellulosic

material into fermentable sugars [39�]. The conversion
Advantages and disadvantages References

ncrease

ze and

ucture of

elluloses

No toxic waste and inhibitors from this

processes

Simple equipment and simple process

but high power consumption

Partial destruction of cellulose,

hemicellulose and incomplete

disruption of the lignin

Cost depends on the initial and final

particle sizes

[24,27,28]

prove

llinity of

ponents

Fast and ideal for biomass with low-

lignin content

High in delignification and

saccharification

Economic only when solvents are

recycled

Expensive and explosive chemicals

and solvents

Generation of inhibitory compounds

Water consumption

Energy cost is very expensive (cost

about $60 per tonne dry biomass)

e

se attack

cy of

sing

ose (45–

Simple, has a short process time and

low enzyme loading is required

Energy and chemical consumption

Requires specific costly equipment

The recovery of ammonia is necessary

to be economically feasible

Consume 8.8 tonne water per tonne of

dry biomass

Expensive and can pollute the

environment

Produces undesired inhibitor

compounds such as furfural, carboxylic

acid (LHW)

Less efficient for biomass with high

lignin content

d lignin–

gradation

er or

lose and

ers

version

f pores

ellulose

ain intact

Environmentally friendly and low

energy consumption

Very slow rate of degradation and

delignification

Delignification ratio dependent on the

microbial strains

The microbes utilise sugars from

cellulose and hemicellulose

Lower amount of inhibitory compounds

Cellulolytic activity of the

microorganism should be low to reduce

the sugar loss

Using ligninolytic enzymes increase the

delignification efficiency
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of LCW into fermentable sugars is, however, considered

the major technological and economical bottleneck in the

production of biofuels from sustainable feedstocks com-

mercially [15]. There are many factors that have been

identified that affect the conversion of polysaccharides

into monomeric sugars. These factors include the porosity

of the LCW (accessible surface area), cellulose crystallin-

ity, and lignin and hemicellulose content. All these factors

affect the complete efficiency of the conversion process

[40]. The conversion of lignocellulosic substrates into

fermentable sugars can be carried out chemically or

biologically [34,38]. For example, chemical hydrolysis

can be carried out either using dilute acid hydrolysis

(i.e. <1% H2SO4, 215 8C, 3 min with 50–70% glucose

yield) or concentrated acid (i.e. 30–70% H2SO4, 40 8C, a

few hours, >80% glucose yield). Biological hydrolyses

(bioconversion) may be more advantageous and could be

enhanced by novel microbial isolates (monocultures or

consortia) or their metabolites. Despite the fact that,

under the same conditions, the yield of the fermentable

sugars achieved by enzymatic hydrolysis can be quanti-

tatively better than that obtained by acid-catalysed hy-

drolysis [19,21], the high doses and cost of enzymes

required for the bioconversion of lignocellulosic biomass

represent the major impediments in the enzymatic hy-

drolysis of these feedstocks [21]. Each polymer requires a

cocktail of different enzymes working together in synergy

to break down the cellulose and hemicellulose biopoly-

mers into simple sugar monomers. Lytic Polysaccharide

Monooxygenases (LPMOs) are oxidases that may be

important in biomass conversion due to their auxiliary

activities (Figure 2A1) [41].

Enzymatic degradation of lignocellulosic
biomass
Enzymatic hydrolysis or biodegradation of LCW can be

performed by using microbial isolates or their enzymes, for

example cellulases and hemicellulases operating at 50 8C
for several days resulting in 75–95% glucose yield [42]. The

main enzymes involved in the saccharification of cellulose

and hemicellulose into fermentable sugars are cellulases,

hemicellulases and ligninases and have been well reviewed

elsewhere (Figure 2) [33,43–48]. The cost of lignocelluloy-

tic enzymes remains the bottleneck for bioethanol produc-

tion and remains one of the main challenges for large scale

production of 2nd generation biofuels from LCW [49�].
Enzymatic hydrolysis therefore requires excessive use of

high-cost enzymes to complete the breakdown of polysac-

charide biopolymers into fermentable sugars [15,18,50,51].

At a minimum, the cooperative action of a battery of a

cellulolytic enzyme (at least three cellulases) is required to

complete the bioconversion of cellulose into glucose. The

cellulases enzymes are endo-1-4-b-glucanase or carboxy-

methylcellulases (EC 3.2.1.4), exoglucanase or cellobiohy-

drolase (EC 3.2.1.91) and b-glucosidase (EC 3.2.1.21)

[44–46]. The endoglucanase acts on amorphous cellulose

regions, attacking the glucose-polymer chain randomly,
Current Opinion in Biotechnology 2016, 38:190–197 
which releases small chains consisting of more reducing

and non-reducing ends. These reducing and non-reducing

ends are exposed to the activity of cellobiohydrolase

enzymes (CBHI attack the reducing ends and CBHII

attack non-reducing ends), producing cellobiose. The third

component of the cellulase cocktail is b-glucosidase, which

hydrolyzes cellobiose, producing glucose as the final prod-

uct of cellulose bioconversion. LPMOs work in synergy

with the hydrolytic cellulases by producing more free ends

for subsequent hydrolysis (Figure 2A and A1) [41,44].

In comparison to cellulose, hemicellulose is more hetero-

geneous, requiring more specific enzymes (with a specific

ratio of enzymes) to achieve the complete biodegradation

of hemicellulose into pentoses, hexoses or uronic acids.

For instance, endo-1,4-b-xylanase or endoxylanase

(E.C.3.2.1.8), xylan 1,4-b-xylan esterases, ferulic and p-

coumaric esterases, a-1-arabinofuranosidases, a-glucuroni-

dase (E.C.3.2.1.139), a-arabinofuranosidase (E.C.3.2.1.55),

acetylxylan esterase (E.C.3.1.1.72) and a-4-O-methyl glu-

curonosidases xylosidase (E.C.3.2.1.37) are all required in

specific ratios for the complete hydrolysis of hemicellulose

(Figure 2B) [33,47,48]. The structural complexity of lignin

also requires a cocktail of oxidising enzymes working

cooperatively with the hydrolytic enzymes to break down

the physical barrier around the polysaccharides allowing the

hydrolytic enzymes access to the carbohydrate biopolymer

substrates. The main enzymes involved in lignin biodegra-

dation are lignin peroxidases, manganese peroxidases and

laccases (Figure 2C) [43].

Limitations to the enzymatic saccharification
of lignocellulosic biomass
Unlike using edible resources as in the first generation

biofuels (corn and sugarcane) where one enzyme is effec-

tive for the bioconversion step, lignocellulosic material is

composed mainly of cellulose, hemicellulose and lignin and

each component is theoretically hydrolysed by specific

hydrolytic and oxidative enzymes working in a synergy

to bioconvert the carbohydrates biopolymers to their mono-

mer sugars [52]. Therefore biodegradation of LCW remains

the bottleneck for the commercial production of cellulosic

biofuels. Bioethanol production from LCW is dependent

on the potential economic efficiency of enzymatic hydro-

lysis of cellulose and hemicellulose by using defined mi-

crobial consortia, novel microbial isolates or a unique

mixture of commercially exploited hydrolytic enzymes in

specific ratios. The cost of these hydrolysis enzymes was

initially too high (about 50% of the total hydrolysis cost; $5

per each gallon or $0.75 per litre of bioethanol) to be used

commercially for the bioconversion process, making the

production of cellulosic bioethanol economically unfeasi-

ble [3,15,53–55]. Despite the successful collaboration

between Novozymes and National Renewable Energy

Laboratory (NREL) to reduce the cost of cellulase enzyme

by 30-fold, (to $0.10–0.18 per gallon or $0.027 per litre of

bioethanol), the prediction of producing 2nd generation
www.sciencedirect.com
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Figure 2
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bioethanol on a large scale by 2010 was not realised, and

unfortunately we are still a long way from those goals [54].

With government subsidies from the US, Novozymes and

Genencor have pledged to develop a commercial enzyme

mixture containing up to 80 different enzymes (in specific

ratios) for cellulosic biofuel production from a specific

substrate — corn stover — to enhance commercial produc-

tion at low-enzyme load, high efficiency and cost-effective-

ness [52]. Van Dyk and Pletschke highlighted the fact that a

large number of enzymes are required to bioconvert lig-

nocellulose’s carbohydrates into monomeric sugars effec-

tively. Furthermore, the hydrolysis activity of multiple

enzyme combinations working cooperatively together

can be higher than adding individual enzymes, with the

hydrolysis yield depending on the specific characteristics

of the enzymes involved, their ratios and the characteristics

of the substrate [52].

Conclusions
Cellulosic bioethanol has not been produced on a large

scale due to technical constrains on LCW deconstruction

which makes the commercial production economically

infeasible in present market conditions. Despite exten-

sive research on optimising the hydrolytic enzymes that

have the capability to bioconvert LCW effectively, novel

hydrolytic-oxidative enzyme mixtures for the complete

bioconversion of carbohydrate biopolymer substrates

(cellulose and hemicellulose) into its reducing sugars

efficiently are lacking. Thus, the enzymatic approach

to LCW bioconversion remains commercially limited

and an area requiring further research.
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