

Some Physical and Chemical Properties of Compost

EI-Sayed G. Khater*

Agricultural Engineering Department, Faculty of Agriculture, Benha University, Egypt

*Corresponding author: El-Sayed G Khater, Agricultural Engineering Department, Faculty of Agriculture, Benha University, Egypt, Tel: +20132467034, +20132467786; E-mail: alsayed.khater@fagr.bu.edu.eg

Received date: November 23, 2014, Accepted date: February 16, 2015, Published date: February 24, 2015

Copyright: © 2015 Khater ESG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The main objective of this research was to study the physical and chemical properties of compost made of different row materials. These materials are cattle manure, herbal plants residues and sugar cane plants residues. These properties include: bulk density, moisture content, water holding capacity, porosity, pH, EC, total organic carbon, total organic matter, total nitrogen, total phosphorus, total potassium and C/N ratio. The bulk density value ranged from 420 to 655 kg m⁻³. The moisture content values ranged from 23.50 to 32.10 %. The water holding capacity values ranged from 3.50 to 4.40 g water/g dry. The porosity values ranged from 60.69 to 72.47 % for different compost types. The pH value ranged from 6.3 to 7.8 and EC values ranged from 2.6 to 4.1 dS m-1 for different compost types. The total organic carbon values ranged from 16.6 to 23.89 %. The total organic matter values ranged from 28.60 to 41.20 %. The total nitrogen values ranged from 0.95 to 1.68 %. The total phosphorus and total potassium values ranged from 0.27 to 1.13 % and 0.27 to 2.11 %, respectively, for different compost types. The C/N ratio values ranged from 14.22:1 to 18.52:1.

Keywords: Physical properties; Chemical properties; Compost

Introduction

Composting is a technique which can be used to reduce the amount of organic waste through recycling and the production of soil fertilizers and conditioners. Compost is primarily used as a soil conditioner and not as much as a fertilizer because it contains a high organic content (90-95%) but generally low concentrations of nitrogen, phosphorus, potassium as well as macro and micro nutrients compared to commercial fertilizers. It is comparable to peat moss in its conditioning abilities. Areas where composting can be beneficial is in the recycling of the organic fraction of the municipal waste. It reduces as much as 30% of the volume, in the form of organic matter, entering our already overcrowded landfill sites. Furthermore the composting process, if performed correctly, transforms wet and odorous organic waste into an aesthetically, dryer, decomposed and reusable product [1].

Crop residues, unused bedding materials, silage, manures, and similar on-farm materials can be used as co-compost cover materials, along with many off-farm residues and wastes. Since a mortality compost pile cannot be turned until the bio-decomposition of the carcass body has been largely completed, the type and thickness of the cover and base layer materials play a key role in influencing the biodegradation of carcasses, and the development and retention of heat that is necessary for pathogen inactivation [2].

Quality control during compost production should ensure adequate chemical and physical properties [3], as well as an adequate degree of stability and maturity [4]. The beneficial effects on crop production and soil quality reported in literature [5,6] are directly related to the physical, chemical and biological properties of the composts [7].

The physical and chemical properties of organic wastes and the factors that affect their performance in composting require easily identifiable and reliable methods to control the process *in situ*, in order to make proper decisions about its performance [8].

Although the characteristics of yard waste will vary, depending upon the predominant vegetation in the area and the season of the year for its collection, composted green waste typically contains low levels of heavy metals, commonly present in sludge-based composts, which makes them more environmentally sound [9].

To produce a sound and a good quality compost, due to the lake of physical and chemical properties of the compost should be determined by the end of processing period, therefore, the main objective of this research was to study some physical and chemical properties of compost made of different row materials. These properties include: pH, EC, total organic carbon, total organic matter, total nitrogen, total phosphorus, total potassium, C/N ratio, bulk density, moisture content, water holding capacity and porosity.

Materials and Methods

The experiment was carried out at the Compost Unit at the Experimental Research Station, Faculty of Agriculture, Moshtohor, Benha University. Some of agricultural wastes are used for compost making, these wastes are cattle manure, herbal plants residues and sugar cane plants residues. The physical and chemical properties that used in the manufacturing the compost are listed in tables (Tables 1 and 2).

Properties	Raw materials			
	Cattle manure	Herbal plants residues	Sugar cane plants residues	
Bulk density (kg m ⁻³)	750.00	335.00	426.00	
Moisture content (%)	58.30	16.20	36.20	
Water holding capacity (g water/g dry sample)	3.00	3.50	3.30	
Porosity (%)	41.57	80.62	69.96	

Table 1: Physical properties of the raw materials used in compost making.

Properties	Raw materials			
	Cattle manure	Herbal plants residues	Sugar cane plants residues	
pН	8.1	4.3	7.1	
EC (dS m ⁻¹)	4.2	1.3	3.1	
Total organic carbon (%)	18.16	9.4	20	
Total organic matter (%)	31.3	43.1	61.3	
Total nitrogen (%)	0.93	1.35	1.62	
Total phosphorus (%)	0.21	0.36	1.12	
Total potassium (%)	0.17	0.42	1.36	
C/N ratio	19.53:1	6.97:1	12.35:1	

Table 2: Chemical properties of the raw materials used in compost making.

Five different types of compost were obtained by mixing cattle manure with herbal plants residues and sugar cane plants residues at different ratios to form:

- 1. C_1 : cattle manure (100:0)
- 2. C₂: cattle manure and herbal plants residues (50:50)
- 3. C₃: cattle manure and sugar cane plants residues (50:50)
- 4. C₄: herbal plants residues (100:0)
- 5. C₅: sugar cane plants residues (100:0)

The mixtures of wastes were composted in piles (1.5 m high, 3 m width and 80 m long). The piles were turned periodically to maintain adequate O_2 levels. The piles were turned weekly during the maturation phase in order to improve the O_2 level inside the pile. Pile moisture was controlled by adding enough water to keep the moisture content not less than 50%. Samples were taken at the end of the composting process to determine the chemical and physical properties.

Each sample was made by mixing five subsamples taken from five points in the pile. Samples were placed in polyethylene bags and transferred to the laboratory for analysis.

Physical properties

The physical properties include: bulk density, moisture content, water holding capacity and porosity.

Moisture contents (MC)

Moisture content (wet basis) throughout this study was measured by drying at 105°C for approximately 24 h or at constant weight [10].

Water holding capacity (WHC)

A wet sample of known initial moisture content was weighed (Wi) and placed in a beaker. After soaking in water for 1–2 days and draining excess water through Whatman #2filter paper, the saturated sample was weighed again (Ws). The amount of water retained by dry sample was calculated as the WHC. The water holding capacity (g water/g dry material) is calculated as [11]:

$$WHC = \frac{\{(W_{s} - W_{i}) + MC \times W_{i}\}}{\{(1 - MC) \times W_{i}\}}$$
(1)

Where:

Wi is the initial weight of sample (g)

Ws is the final weight of sample (g)

MC is the initial moisture content of sample (decimal)

Bulk density and porosity

Bulk density was measured using an approximately 10 liters volume container. The container was filled with material, and then the material was slightly compacted to ensure absence of large void spaces. The bulk density was calculated by dividing the weight of the material by the volume of material in the container.

Compost porosity (ϵ_a) was determined using the known density of water (ρ_w ; 1000 kg m⁻³) and estimated densities of organic matter (ρ_{om} ; 1600 kg m⁻³), and ash (ρ_{ash} ; 2500 kg m⁻³), as well as the moisture content and bulk densities of the sample [12-14]. If the moisture content (MC), dry matter (DM), organic matter (OM), and wet bulk density (ρ_{wb}) of samples are known, the porosity can be calculated using the following equation:

$$\varepsilon_a = 1 - \rho_{Wb} \left(\frac{MC}{\rho_W} + \frac{DM \cdot OM}{\rho_{om}} + \frac{DM \cdot (1 - OM)}{\rho_{ash}} \right) \times 100$$
(2)

Where:

 ϵ_a is the compost porosity (%)

 ρ_{wb} is the wet bulk density (kg m⁻³)

 ρ_w is the density of water (kg m⁻³)

 ρ_{om} is the density of organic matter (kg m⁻³)

 ρ_{ash} is the density of ash (kg m⁻³)

MC is the moisture content (decimal)

DM is the dry matter (decimal)

OM is the organic matter (decimal)

Chemical properties

The chemical properties include: pH, EC, total organic carbon, total organic matter, total nitrogen, total phosphorus, total potassium and C/N ratio.

Electrical conductivity was measured using EC meter (Model ORION 105 – Range 0 – 199.99 dS m⁻¹ \pm 0.01, USA). pH was measured using pH meter (Model ORION 230A – Range -2 – 19.99 \pm 0.01, USA). Total organic carbon (TOC) by the dry combustion method at 540C for 4 h according to [15]. Total organic matter was measured by combustion at 550C for 8 h according to [16] and total nitrogen (TN) by Kjeldahl digestion [17]. Potassium (K) was determined by atomic absorption and phosphorus (P) was determined colorimetrically following the [18] method.

Results and Discussion

Physical properties

Table 3 shows the physical properties (bulk density, moisture content, water holding capacity and porosity) of the different types of compost (cattle manure, cattle manure and herbal plants residues (50:50), cattle manure and sugar cane plants residues (50: 50), herbal plants residues and sugar cane plants residues).

The results indicate that the bulk density value ranged from 420 to 655 kg m⁻³ for different compost types. The highest value of bulk density (655 kg m⁻³) was found for cattle manure compost and the lowest value of bulk density (420 kg m⁻³) was found for sugar cane plants residues compost. [8] found that the bulk density values were between 447 and 502 kg m⁻³ for different compost types, as agreed with [19-22] results.

It could be seen that the bulk density of compost decreases with increasing the compost total organic matter. Figure 1 shows the

relationship between the bulk density and the total organic matter. It decreases from 655 to 420 kg m⁻³ when the total organic matter increased from 28.6 to 41.2%.

Page 3 of 5

Properties	Compost types				
	C ₁	C ₂	C ₃	C ₄	C ₅
Bulk density (kg m ⁻³)	655	625	573	582	420
Moisture content (%)	25.6	23.5	30.1	31.2	32.1
Water holding capacity (g water/g dry sample)	3.5	3.7	4.1	3.9	4.4
Porosity (%)	60.69	62.67	63.52	66.56	72.47

Table 3: Physical properties of different compost types. C_1 : cattle manure (100: 0); C_2 : cattle manure and herbal plants residues (50: 50); C_3 : cattle manure and sugar cane plants residues (50: 50); C_4 : herbal plants residues (100: 0); C_5 : sugar cane plants residues (100: 0).

The regression between the bulk density of compost and the compost total organic matter is show the following equation:

 $BD = -18.399 \text{ TOM} + 1212 \qquad R^2 = 0.89 \qquad (3)$

Where:

BD is the bulk density (kg m⁻³)

TOM is the total organic matter (%)

The moisture content values ranged from 23.50 to 32.10% for different compost types. The lowest value of moisture content (23.50%) was found for cattle manure and herbal plants residues (50: 50) compost and the highest value of moisture content (32.10%) was obtained for sugar cane plants residues compost.

Regarding the water holding capacity values ranged from 3.50 to 4.40 g water/g dry sample for different compost types. The lowest value of water holding capacity (3.50 g water/g dry sample) was found for cattle manure compost and the highest value of water holding capacity (4.40 g water/g dry sample) was found for sugar cane plants residues compost.

The porosity values ranged from 60.69 to 72.47% for different compost types. The lowest value of the porosity (60.69%) was found for cattle manure compost and the highest value of the porosity (72.47%) was found for sugar cane plants residues compost. The

porosity depends on bulk density and moisture content of compost. The porosity decreased with increasing bulk density and moisture content. Figures 2 and 3 shows the relationship between the porosity and bulk density and the porosity and moisture content. The results indicate that the porosity of compost decreased from 72.47 to 60.69% when the bulk density increased from 420 to 655 kg m⁻³. The results indicate that the porosity of compost decreased from 72.47 to 60.69% when the moisture content increased from 25.6 to 32.1%. These results agreed with those obtained by [11].

Figure 2: The relationship between the porosity and bulk density.

The regression between the porosity and the bulk density of

The regression between the porosity and the bulk density of compost and the porosity of compost and the compost total organic matter are shown in the following equations:

$\varepsilon_a = -0.0487 \text{ BD} + 92.981$	$R^2 = 0.93$	(4)	
$\varepsilon_a = 0.9407 \text{ TOM} + 38.373$	$R^2 = 0.60$	(5)	

Chemical properties

Table 4 shows the chemical properties (pH, EC, total organic carbon, total organic matter, total nitrogen, total phosphorus, total potassium and C/N ratio) of different types of compost (cattle manure, cattle manure and herbal plants residues (50:50), cattle manure and sugar cane plants residues (50:50), herbal plants residues and sugar cane plants residues). It could be seen that the pH value ranged from

6.3 to 7.8 for different compost types. The highest value of pH (7.8) was found for herbal plants residues compost, while, the lowest value of pH (6.3) was obtained for sugar cane plants residues compost. This pH range is in the optimum range for growing media as mentioned by [23] who stated that the optimal range is from 5.2 to 7.3.

The EC values ranged from 2.6 to 4.1 dS m^{-1} for different compost types. The highest value of EC (4.1 dS m^{-1}) was found for cattle manure compost and the lowest value of EC (2.6 dS m^{-1}) was determined for the herbal plants residues compost. This EC range is in the optimum range (2.0 to 4.0) for growing media as mentioned by [24].

Properties	Compost types					
	C ₁	C ₂	C ₃	C ₄	C ₅	
pН	7.3	7.6	7.2	7.8	6.3	
EC (dS m ⁻¹)	4.1	3.1	3.6	2.6	3.2	
Total organic carbon (%)	16.6	18.98	20.64	20.93	23.89	
Total organic matter (%)	28.6	32.7	35.6	36.1	41.2	
Total nitrogen (%)	0.95	1.26	1.32	1.13	1.68	
Total phosphorus (%)	0.31	0.27	0.51	0.32	1.13	
Total potassium (%)	0.27	0.35	0.62	0.51	2.11	
C/N ratio	17.47	15.06	15.64	18.52	14.22	

Table 4: Chemical properties of different compost types. C_1 : cattle manure (100: 0) C_2 : cattle manure and herbal plants residues (50: 50); C_3 : cattle manure and sugar cane plants residues (50: 50); C_4 : herbal plants residues (100: 0); C_5 : sugar cane plants residues (100: 0).

Regarding the total organic carbon results it was found that it ranged from 16.6 to 23.89% for different compost types under study, where, the lowest value of total organic carbon (16.6%) was found for cattle manure compost and the highest value of total organic carbon (23.89%) was obtained for sugar cane plants residues compost. These results are in agreement with [25] who found that the optimum value of total organic matter higher than 10%.

The total organic matter values ranged from 28.60 to 41.20% for different compost types. The lowest value of total organic matter (28.60%) was found for cattle manure compost and the highest value of total organic matter (41.20%) was found for sugar cane plants residues compost. These results are in agreement with [9] whose found that the highest value of total organic matter about 44%.

The total nitrogen values ranged from 0.95 to 1.68% for different compost types under study. The lowest value of total organic carbon (0.95%) was found for cattle manure compost and the highest value of total organic carbon (1.68%) was found for sugar cane plants residues compost. These results are in agreement with those obtained by [9] whose found that the total nitrogen rate ranged from 0.99 to 2.01%.

The total phosphorus and total potassium values ranged from 0.27 to 1.13% and 0.27 to 2.11%, respectively, for different compost types. The lowest value of total phosphorus (0.27%) was found for herbal

plants residues and cattle manure (50: 50) compost and the highest value of total phosphor (1.13%) was found for sugar cane plants residues compost. The lowest value of total potassium (0.27%) was found for cattle manure compost and the highest value of total potassium (2.11%) was found for sugar cane plants residues compost.

Regarding the C/N ratio, it ranged from 14.22:1 to 18.52:1 for different compost types. The lowest value of C/N ratio (14.22: 1) was found for sugar cane plant residues compost and the highest value of C/N ratio (18.52: 1) was found for herbal plant residues compost. These results are in agreement with the results obtained by [26] whose found that the C/N ratio ranged from 15:1 to 20:1 is ideal for ready-to-use compost.

Conclusions

An experimental study was carried out successively to determine some physical and chemical properties of different compost types. The obtained results indicate that the pH value ranged from 6.3 to 7.8 and EC values ranged from 2.6 to 4.1 dS m⁻¹ for different compost types. The total organic carbon values ranged from 16.6 to 23.89%. The total organic matter values ranged from 28.60 to 41.20%. The total nitrogen values ranged from 0.95 to 1.68%. The total phosphorus and total potassium values ranged from 0.27 to 1.13% and 0.27 to 2.11%, respectively, for different compost types. The C/N ratio values ranged from 14.22:1 to 18.52:1. The bulk density value ranged from 420 to 655 kg m⁻³. The moisture content values ranged from 3.50 to 32.10%. The water holding capacity values ranged from 3.50 to 4.40 g water/g dry. The porosity values ranged from 60.69 to 72.47% for different compost types.

References

- 1. Knight W (1997) Compost convective airflow, N and C conservation with passive and active aeration. M. Sc. Thesis, Agric. And Biosystems Eng. McGill University, Canada.
- 2. Fonstad TA, Meier DE, Ingram LJ, Leonard J (2003) Evaluation and demonstration of composting as an option for dead animal management in Saskatchewan. Canadian Biosystems Engineering 45: 19–25.
- Inbar Y, Chen Y, Hoitink HA (1993) Properties for establishing standards for utilization of composts in container media. In: Hoitink, H.A.J., Keener, H.M. (Eds.), Science and Engineering of Composting: Design, Environmental. Microbiological and Utilization Aspects. Ohio State University, USA.
- 4. Benito M, Masaguer A, Moliner A, Arrigo N, Palma RM (2003) Chemical and microbiological parameters for the characterization of stability and maturity of pruning waste compost. Biol Fert Soils 37: 184–189.
- Hoitink HA, Stone AG, Han DY (1997) Suppression of plant diseases by composts. HortScience 32: 184–187.
- Atiyeh RM, Edwards CA, Subler S, Metzger JD (2001) Pig manure vermicompost as component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour Technol 78: 11–20.
- He X, Logan TJ, Traina SJ (1995) Physical and chemical characteristics of selected US Municipal solid waste composts. J Environ Qual 24: 543–552.

- Hurerta-Pujol O, Soliva M, Martinez-Farre FX, Valero J, Lopez M (2010) Bulk density determination as a simple and complementary too in composting process control. Bioresour Technol 101: 995–1001.
- Benito M, Masaguer A, Moliner A, De Antonio R (2005) Use of pruning waste compost as a component in soilless growing media. Bioresour Technol 97: 2071–2076.
- Moisture measurement-meat and products. Adopted and published by ASAE 1998, St. Joseph, MI: ASAE. 45th Edition P552. ASAE Standards, Washington DC, USA.
- Ahn HK, Richard TL, Glanville TD (2008) Laboratory determination of compost physical parameters for modeling of airflow characteristics. Waste Management 28: 660–670.
- 12. Raman S (1995) Food Properties Handbook. CRC Press, Boca Raton, Florida.
- van Cingel CT, Raats PA, van Haneghem IA (1999) Bulk density and porosity distributions in a compost pile. Netherlands Journal of Agricultural Science 47: 105–121.
- 14. Richard TL, Hamelers HV, Veeken AH, Silva T (2002) Moisture relationships in composting processes. Compost Science and Utilization 10: 286–302.
- Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2002) Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol 82: 241–245.
- Test Methods for the Examination of Composting and Compost (TMECC) (2001) The Composting Council Research and Education Foundation, Bethesda, MD, USA.
- Bremmer JM, Mulvaney CS (1982) Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, second ed., Agronomy series No. 9 ASA, SSSA, Madison, WI.
- Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chem Acta 27: 31– 36.
- 19. Raviv M, Tarre S, Geler Z, Shelef G (1987) Changes in some physical and chemical-properties of fibrous solids from cow manure and digested cow manure during composting. Biol Waste 19: 309–318.
- Larney FJ, Olson AF, Carcamo AA, Chang C (2000) Physical changes during active and passive composting of beef feedlot manure in winter and summer. Bioresour Technol 75: 139–148.
- 21. Mohee R, Mudhoo A (2005) Analysis of the physical properties of an invessel composting matrix. Powder Technol 155: 92–99.
- Romeela M, Ackmez M, Unmar GD (2008) Windrow co-composting of shredded office paper and broiler litter. Int J Environ Waste Manage 2: 3–23.
- 23. Bunt AC (1988) Media and Mixes for Container-Grown Plants, 2nd edn. Unwin Hyman Ltd, London, UK.
- 24. Hanlon EA (2012) Soil pH and electrical conductivity: a count extension soil laboratory manual. IFAS Extension, University of Florida, FL, USA.
- 25. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47: 151-163.
- Rosen CJ, Halbach TR, Swanson BT (1993) Horticultural uses of municipal solid waste components. Hortic Technol 3: 167–173.