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Soil contamination with toxic environmental pollutants [such as cadmium (Cd)] is becoming a serious global
problem due to rapid development of social economy. To improve the growth and yield of a plant, various
chelating agents, such as ethylenediaminetetraacetic acid (EDTA) and citric acid (CA), can be applied to the
soil; such application not only increases plant uptake of metals from the soil but also promotes plant absorp-
tion of micronutrient fertilizers from the medium. For this purpose, we have conducted a pot experiment
using the exogenous application of CA (2.5 mM) and EDTA (2.5 mM) in pepper (Capsicum annuum L.) seed-
lings grown under the varying levels of Cd (0, 50 and 100 mM) in the soil. M]. Our results depicted that Cd
addition to the soil significantly (P < 0.05) decreased plant growth and biomass, gas exchange attributes, and
mineral uptake by C. annuum when compared to the plants grown without the addition of Cd. However, Cd
toxicity boosted the production of reactive oxygen species (ROS) by increasing the content of malondialde-
hyde (MDA), which is the indication of oxidative stress in C. annuum, and was also manifested by hydrogen
peroxide (H2O2) content and electrolyte leakage to the membrane-bound organelles. The results showed
that the activities of various antioxidative enzymes, such as superoxidase dismutase (SOD), peroxidase
(POD), catalase (CAT), and ascorbate peroxidase (APX), and their specific gene expression and also the con-
tent of non-enzymatic antioxidants, such as phenolic, flavonoid, ascorbic acid, and anthocyanin, initially
increased with an increase in the Cd concentration in the soil. The results also revealed that the levels of solu-
ble sugar, reducing sugar, and non-reducing sugar were decreased in plants grown under elevating Cd levels,
but the accumulation of the metal in the roots and shoots of C. annuum, was found to be increased. The nega-
tive impacts of Cd injury were reduced by the application of EDTA and CA, which increased plant growth and
biomass, improved photosynthetic apparatus, antioxidant enzymes and their gene expression, and mineral
uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in C. annuum by
decreasing Cd toxicity. Here, we conclude that the application of EDTA and CA under the exposure to Cd
stress significantly improved plant growth and biomass, photosynthetic pigments, and gas exchange
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characteristics; regulated antioxidant defense system and essential nutrient uptake; and balanced organic
acid exudation pattern in C. annuum.

© 2023 Published by Elsevier B.V. on behalf of SAAB.
1. Introduction

In recent decades, rapid increases in urbanization and industriali-
zation have caused the excessive release of toxic metals in farmlands
with damaging effects on ecosystems (Ashraf et al., 2017; Zainab et
al., 2021). Toxic metal accumulation in soils is of great concern in
agricultural production due to its adverse effects on food safety and
marketability, crop growth due to phytotoxicity, and the environ-
mental health of soil organisms (Madhu and Sadagopan, 2020; Khan
et al., 2021). Among various toxic pollutants, cadmium (Cd) is a more
prominent toxic pollutant due to its severe toxicity and ability to
induce damage to normal growth and development (Adrees et al.,
2020; Afzal et al., 2020). Cd, a known toxic metal, possesses proper-
ties of water solubility, phytotoxicity, higher rates of relative mobil-
ity, and can induce toxicity to membrane-bound organelles (Faizan et
al., 2021; Ma et al., 2022c). Furthermore, Cd-toxicity damages plant
cells including chloroplasts, cell nuclei, and mitochondria leading to a
reduction in chlorophyll (Dad et al., 2021) and also causes the forma-
tion of reactive oxygen species (ROS) arises that do not partake in
Fenton-type reactions, which ultimately initiates destructive path-
ways in plants (Heile et al., 2021). The generation of ROS are easily
handled by plants through adopting extremely effective endogenous
approaches for the mitigation of ROS by implementing enzymatic
and non-enzymatic antioxidants of their constituents (Saleem et al.,
2020a; Perveen et al., 2021). The principal antioxidant enzymes are
catalase (CAT), ascorbate peroxide (APX), and superoxide dismutase
(SOD) which were characterized by converter hydrogen peroxide
(H2O2), and superoxide (O�2) to mitigate toxicity in plants and reduce
the concentration of MDA and H2O2 (Bashir et al., 2018; Javed et al.,
2020). Therefore, it remains a priority to decrease the concentration
of Cd in nutritional crops to limit transmission into the food chain.

Different chelating agents have been used to enhance metal solu-
bility in the soil. Ethylenediaminetetraacetic acid (EDTA) is one of the
most effective chelating agents for artificially increasing solubility,
complexation, and uptake of Cd and several other toxic metals (Farid
et al., 2013). Thus, the addition of EDTA into the soil induces uptake
and translocation of toxic metals from the roots to shoots of plants
(Saleem et al., 2020b) and is especially important for increased
uptake and translocation of toxic metals. On the other hand, citric
acid (CA) is a is commonly used chelating agent that desorbs metals
from soil matrix into soil solution and facilitate their uptake by plants
(Najeeb et al., 2011; Maqbool et al., 2018). Although the combined
application of EDTA and CA improved plant growth and development
and phytoextraction potential regarding various toxic metals (Turgut
et al., 2004; Lesage et al., 2005; Mohammadi et al., 2021). Previous
studies of the tolerance to and accumulation of toxic metals by pep-
per (Capsicum annuum L.) indicated that this plant has different toxic
metal utilization in different growth mediums (Pal et al., 2018; Altaf
et al., 2022). In the solanaceous family, C. annuum is an important
horticultural crop due to its economic significance. Due to its nutri-
tional and economic importance, it is considered a valuable cash crop
over the globe. Pepper fruit is an excellent source of antioxidants,
vitamins, proteins, carbohydrates, fats, and phenolic compounds
(Souri and Sooraki, 2019; Kaya et al., 2020; Mousavi et al., 2021; El-
kazzaz et al., 2022). The reports on the physiological and biochemical
response under metal toxicity of the C. annuum are still low in num-
ber, which warrants further investigation.

The present study explored the effects of EDTA and CA on plant
growth and biomass, photosynthetic pigments and gas exchange
characteristics, oxidative stress indicators and the response of various
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antioxidants (enzymatic and nonenzymatic) and their gene expres-
sion, nutritional status of the plant, organic acid exudation pattern
and also Cd accumulation in the roots and shoots of the plants in C.
annuum seedlings under a high concentration of Cd in the soil.
Although a few studies (Turgut et al., 2004; Sinhal et al., 2010) have
been conducted on Cd toxicity in different species using chelating
agents, i.e., EDTA and CA. The results of this study enhance our
knowledge about (i) the enhancement of Cd accumulation in C. ann-
uum by using EDTA and CA and (ii) alterations in growth, gas
exchange attributes, antioxidants and their gene expression due to
EDTA and CA treatment in the presence of a high concentration of Cd
in the soil.

2. Materials and methods

2.1. Experimental design and growth condition

The present study was conducted in the botanical garden under a
greenhouse environment. The mature and healthy pepper seeds
(Capsicum annum L. Var. Ca-59) were used in this experiment and
experiment was performed in a plant growth room under specific
conditions (the overall average day/night temperature was 19 § 3/10
§ 2 °C, with a relative humidity of 62.0�65.1%, and the day length
averaged 10�11 h per day, respectively). The same variety of pepper
was used by Altaf et al. (2022) in their experiment under vanadium
stress. Before seed sowing, the seeds were carefully washed and ster-
ilized in 0.1% HgCl2 solution for 1 min and then washed thrice with
distilled water. All pots (35 cm height £ 25 cm width) were covered
with plastic bags. For the complete removal of cations and anions,
the sand was washed with distilled water several times. After that, in
each pot, about 15 seeds were sown and each pot was kept in a
greenhouse where they received natural light and air. Each pot was
placed in a randomized manner with four replicates per treatment
being carried out. The soil used for this experiment was air dried,
passed through a 5-mm sieve, and was water saturated twice before
being used in pots. The physiochemical properties of the soil used in
this study are presented in Supplementary Table 1. Small pots were
used in this study, each containing 5 kg of uncontaminated sand.
Before starting the pot experiment, the sand was artificially spiked
with various levels (0, 50 and 100 mM) of Cd by using CdCl2 salt. All
pots have undergone two cycles of water saturation and air drying.
The experiment was executed by using a completely randomized
design (CRD) with four plants per pot with four replications per treat-
ment. In this experiment, we used an EDTA concentration (2.5 mM)
which was followed by Azhar et al. (2006), Habiba et al, (2015) and
CA (2.5 mM) concentration was slightly higher than used by Parveen
et al. (2020). After four weeks of treatment with CdCl2 alone or with
EDTA and/or CA, all plants were harvested for the measurement of
morphological traits, gas exchange attributes, antioxidant levels and
metal accumulation in different parts of the plant.

2.2. Plant harvesting and data collection

After four weeks, remaining three seedlings were up rooted and
washed gently with the help of distilled water to eliminate the aerial
dust and deposition. Functional leaf in each treatment was picked at
a rapid growth stage during 09:00�10:30 a.m. The sampled leaves
were washed with distilled water, immediately placed in liquid nitro-
gen, and stored in a freezer at �80 °C for further analysis. All the har-
vested plants were divided into two parts i.e., roots and shoots to
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study different physio-biochemical traits. Leaves from each treat-
ment group were picked for chlorophyll, carotenoid, oxidative stress
and antioxidants analysis. Root and shoot lengths were measured
straightway after the harvesting by using measuring scale and digital
weighting balance to measure fresh biomass. Primary branches were
measured by straightway counting it and also fruit length was also
measure by measuring scale. Roots were uprooted and immersed in
20 mM Na2EDTA for 15�20 min to remove Cd adhered to the root
surfaces. Then, roots were washed thrice with distilled water and
finally once with de-ionized water and dried for further analysis. The
different parts of the plant (roots and shoots) were oven-dehydrated
at 65 °C for 72 h for Cd determination and the total plant dry weight
was also measured. Although this experiment was conducted in pots,
for the collection of organic acids, two seedlings were transferred to
rhizoboxes which consisted of plastic sheet, nylon net, and wet soil
(Javed et al., 2013). After 48 h, plants were taken from the rhizoboxes
and the roots were washed with redistilled water to collect the exu-
dates from the root surface. The samples were filtered through a
0.45°mm filter (MillexHA, Millipore, United States) and collected in
Eppendorf tubes (Greger and Landberg, 2008). The collected samples
were mixed with NaOH (0.01 M) in order to analyze the organic acids.
However, the samples used for the analysis of oxalic acid were not
treated with NaOH (Javed et al., 2013).

2.3. Determination of photosynthetic pigments and gas exchange
characteristics

Leaves were collected for the determination of chlorophyll and
carotenoid contents. For chlorophylls, 0.1 g of fresh leaf sample was
extracted with 8 mL of 95% acetone for 24 h at 4 °C in the dark. The
absorbance was measured by a spectrophotometer (UV-2550; Shi-
madzu, Kyoto, Japan) at 646.6, 663.6, and 450 nm. Chlorophyll con-
tent was calculated by the standard method of (Arnon, 1949).

Net photosynthesis (Pn), leaf stomatal conductance (Gs), transpi-
ration rate (Ts), and intercellular carbon dioxide concentration (Ci)
were measured from four different plants in each treatment group.
Measurements were conducted between 11:30 and 13:30 on days
with a clear sky. Rates of leaf Pn, Gs, Ts, and Ci were measured with a
LI-COR gas-exchange system (LI-6400; LI-COR Biosciences, Lincoln,
NE, USA) with a red-blue LED light source on the leaf chamber. In the
LI-COR cuvette, CO2 concentration was set as 380 mmol mol�1 and
LED light intensity was set at 1000 mmol m�2 s�1, which was the
average saturation intensity for photosynthesis in C. annuum (Austin,
1990).

2.4. Determination of oxidative stress indicators

The degree of lipid peroxidation was evaluated as malondialde-
hyde (MDA) contents. Briefly, 0.1 g of frozen leaves were ground at
4 °C in a mortar with 25 mL of 50 mM phosphate buffer solution (pH
7.8) containing 1% polyethene pyrrole. The homogenate was centri-
fuged at 10,000 £ g at 4 °C for 15 min. The mixtures were heated at
100 °C for 15�30 min and then quickly cooled in an ice bath. The
absorbance of the supernatant was recorded by using a spectropho-
tometer (xMarkTM Microplate Absorbance Spectrophotometer; Bio-
Rad, United States) at wavelengths of 532, 600, and 450 nm. Lipid
peroxidation was expressed as l mol g�1 by using the formula: 6.45
(A532-A600)-0.56 A450. Lipid peroxidation was measured by using a
method previously published by Heath and Packer (1968).

To estimate H2O2 content of plant tissues (root and leaf), 3 mL of
sample extract was mixed with 1 mL of 0.1% titanium sulfate in 20%
(v/v) H2SO4 and centrifuged at 6000£g for 15 min. The yellow color
intensity was evaluated at 410 nm. The H2O2 level was computed by
the extinction coefficient of 0.28 mmol�1 cm�1. The contents of H2O2

were measured by the method presented by Jana and Choudhuri
(1981).
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Stress-induced electrolyte leakage (EL) of the uppermost
stretched leaves was determined by using the methodology of Dioni-
sio-Sese and Tobita (1998). The leaves were cut into minor slices
(5 mm length) and placed in test tubes having 8 mL distilled water.
These tubes were incubated and transferred into a water bath for 2 h
prior to measuring the initial electrical conductivity (EC1). The sam-
ples were autoclaved at 121 °C for 20 min and then cooled down to
25 °C before measuring the final electrical conductivity (EC2). Electro-
lyte leakage was calculated by the following formula;

EL ¼ EC1=EC2ð Þ � 100

2.5. Determination of antioxidant enzyme activities and their gene
expression

To evaluate enzyme activities, fresh leaves (0.5 g) were homoge-
nized in liquid nitrogen and 5 mL of 50 mmol sodium phosphate
buffer (pH 7.0), including 0.5 mmol EDTA and 0.15 mol NaCl. The
homogenate was centrifuged at 12,000 £ g for 10 min at 4 °C, and the
supernatant was used for measurement of superoxidase dismutase
(SOD) and peroxidase (POD) activities. SOD activity was assayed in
3 mL reaction mixture containing 50 mM sodium phosphate buffer
(pH 7), 56 mM nitro blue tetrazolium, 1.17 mM riboflavin, 10 mM
methionine, and 100 mL enzyme extract. Finally, the sample was
measured by using a spectrophotometer (xMarkTM Microplate Absor-
bance Spectrophotometer; Bio-Rad). Enzyme activity was measured
by using a method by (Ali et al., 2022) and expressed as U g�1 FW.

POD activity in the leaves was estimated by using the method of
Sakharov and Ardila (1999) by using guaiacol as the substrate. A reac-
tion mixture (3 mL) containing 0.05 mL of enzyme extract, 2.75 mL of
50 mM phosphate buffer (pH 7.0), 0.1 mL of 1% H2O2, and 0.1 mL of
4% guaiacol solution was prepared. Increases in the absorbance at
470 nm because of guaiacol oxidation was recorded for 2 min. One
unit of enzyme activity was defined as the amount of the enzyme.

Catalase (CAT) activity was analyzed according to Aebi (1984). The
assay mixture (3.0 mL) was comprised of 100 mL enzyme extract,
100 mL H2O2 (300 mM), and 2.8 mL 50 mM phosphate buffer with
2 mM ETDA (pH 7.0). The CAT activity was measured from the decline
in absorbance at 240 nm as a result of H2O2 loss (e = 39.4 mM�1

cm�1).
Ascorbate peroxidase (APX) activity was measured according to

Nakano and Asada (1981). The mixture containing 100 mL enzyme
extract, 100 mL ascorbate (7.5 mM), 100 mL H2O2 (300 mM), and
2.7 mL 25 mM potassium phosphate buffer with 2 mM EDTA (pH 7.0)
was used for measuring APX activity. The oxidation pattern of ascor-
bate was estimated from the variations in wavelength at 290 nm
(e = 2.8 mM�1 cm�1).

The expression profile of the defense genes (i.e., Fe-SOD, POD,
CAT, and APX) was carried out through RT q-PCR in rice plants grown
after being treated with selected strains in a greenhouse experiment.
For this, the selected gene sequences were taken from NCB1, fol-
lowed by designing primers through the PrimerQuest tool; the pri-
mers are listed in Supplementary Materials Table S2. The
housekeeping gene elongation factor 1-alpha (ef1) was used in the
present study. Briefly, RNA was extracted from fresh rapeseed plant
leaves inoculated with selected strains and ddH2O was used as the
control grown under infested and non-infested A. besseyi in green-
house conditions after 4 days’ post-inoculation (dpi) through the TRi-
zole method. Gene-targeting primers were designed based on mRNA
or expressed sequence tag (EST) for the corresponding genes as fol-
lows: Fe-SOD (F: 50 ACGGTGTGACCACTGTGACT 30, R: 50

GCACCGTGTTGTTTACCATC30), POD (F: 50ATGTTTCGTGCGTCTCTGTC30,
R: 50 TACGAGGGTCCGATCTTAGC 30), CAT (F: 50 TCGCCATGCTGA-
GAAGTATC 30, R: 50 TCTCCAGGCTCCTTGAAGTT 30), APX (F:50

ATGAGGTTTGACGGTGAGC 30, R:50 CAGCATGGGAGATGGTAGG 30) as
an internal control. The Vazyme HiScript II Q RT SuperMix Kit
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(Vazyme, Nanjing, China) was used for cDNA synthesis. RT-qPCR was
performed to analyze the expression profile of selected genes in rape-
seed plants through a ABI 7500 Fast Real-Time PCR Detection System
(Thermo Fisher Scientific, San Jose, CA, USA). The PCR machine was
programmed using the following steps: initial denaturation at 95 °C
for 30 s, including 40 cycles of 95 °C for 5 s, and 34 s at 60 °C. Finally,
relative quantification was performed according to the comparative
C method of 2�ΔΔ CT as described in Kong et al. (2021). The threshold
cycle (Ct) value of actin was subtracted from that of the gene of inter-
est to obtain the DCt value.

2.6. Determination of non-enzymatic antioxidants, sugars, and proline
contents

Plant ethanol extracts were prepared for the determination of
non-enzymatic antioxidants and some key osmolytes. For this pur-
pose, 50 mg of dry plant material was homogenized with 10 mL etha-
nol (80%) and filtered through Whatman No. 41 filter paper. The
residue was re-extracted with ethanol, and the 2 extracts were
pooled together to a final volume of 20 mL. The determination of fla-
vonoids (Pękal and Pyrzynska, 2014), phenolics (Bray and Thorpe,
1954), ascorbic acid (Azuma et al., 1999), anthocyanin (Lewis et al.,
1998), and total sugars (Dubois et al., 1956) and also free amino acids
was performed from the extracts.

Fresh leaf material (0.1 g) was mixed thoroughly in 5 mL aqueous
sulphosalicylic acid (3%). The mixture was centrifuged at 10,000£g
for 15 min, and an aliquot (1 mL) was poured into a test tube having
1 mL acidic ninhydrin and 1 mL glacial acetic acid. The reaction mix-
ture was first heated at 100 °C for 10 min and then cooled in an ice
bath. The reaction mixture was extracted with 4 mL toluene, and test
tubes were vortexed for 20 s and cooled. Thereafter, the light absor-
bance at 520 nm was measured by using a UV�vis spectrophotome-
ter (Hitachi U-2910, Tokyo, Japan). The free proline content was
determined on the basis of the standard curve at 520 nm absorbance
and expressed asmmol (g FW) �1 (Bates et al., 1973).

2.7. Determination of nutrient content

For nutrient analysis, plant roots and shoots were washed twice in
redistilled water, dipped in 20 mM EDTA for 3 s, and then, again,
washed with deionized water twice for the removal of adsorbed
metal on the plant surface. The washed samples were then oven-
dried for 24 h at 105 °C. The dried roots and shoots were digested by
using a wet digestion method in HNO3: HClO4 (7:3 V/V) until clear
samples were obtained. Each sample was filtered and diluted with
redistilled water up to 50 mL. The root and shoot contents of Fe, Ca,
Mg, and P and were analyzed by using Atomic Absorption Spectro-
photometer (AAS) model Agilent 240FS-AA.

2.8. Determination of root exudates analysis and Cd concentration

In order to determine the concentration of organic acids, freeze-
dried exudates were mixed with ethanol (80%), and 20 mL of the sol-
utions were injected into the C18 column (Brownlee Analytical C-
183 mm; length 150 mm£4.6 mm2, USA). Quantitative analysis of
organic acids in root exudates was executed with high-performance
liquid chromatography (HPLC), having a Flexer FX-10 UHPLC isocratic
pump (PerkinElmer, MA, USA). The mobile phase used in HPLC was
comprised of an acidic solution of aceto-nitrile containing aceto-
nitrile:H2SO4:acetic acid in ratios of 15:4:1, respectively, and pH of
4.9. The samples were analyzed at a flow rate of 1.0 mL min�1 for a
time period of 10 min. The inner temperature of the column was
fixed at 45 °C, and quantification of organic acids was carried out at
214 nm wavelength with the help of a detector (UV�vis Series 200,
USA) as described by UdDin et al. (2015). Freeze-dried samples were
dissolved in redistilled water, and the pH of the exudates was
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recorded with LL micro-pH glass electrode by using a pH meter
(ISTEK Model 4005�08007 Seoul, South Korea).

The ground samples were digested with pure HNO3 at 190 °C for
45 min (10 min preheating, 15 min heating, 20 min cooling) in a
microwave oven (Mars 6, CEM Corporation, Matthews, NC, USA) with
the settings described in detail by Jezek et al. (2015). Samples were
diluted with 2% HNO3 and determined by an atomic absorption spec-
trophotometer (AAS), model Agilent 240FS-AA.
2.9. Statistical analysis

The normality of data was analyzed using IBM SPSS software
(Version 21.0. Armonk, NY, USA: IBM Corp) through a multivari-
ate post hoc test, followed by a Duncan’s test in order to deter-
mine the interaction among significant values. Thus, the
differences between treatments were determined by using
ANOVA, and the least significant difference test (P < 0.05) was
used for multiple comparisons between treatment means where
significant, Tukey’s HSD post hoc test was used to compare the
multiple comparisons of means. The analysis showed that the
data in this study were almost normally distributed. The graphical
presentation was carried out using Origin-Pro 2019.
3. Results

3.1. Effect of exogenous application of EDTA and CA on plant growth and
photosynthetic pigments under the varying levels of Cd in the soil

In the present study, various growth and photosynthetic parame-
ters were also measured in C. annuum grown under the different lev-
els of Cd 0 (no Cd), 50 and 100 mM in the soil which were also
supplied with the different exogenous levels of EDTA and CA. The
data regarding plant height, primary branches, secondary branches,
fruit length, fruit width, fruit fresh weight, number of fruits and fruit
dry weight is presented in Fig. 1 and the data regarding the chloro-
phyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net pho-
tosynthesis, stomatal conductance, transpiration rate and
intercellular CO2 is presented in Fig. 2. According to the results, it was
noticed that the increasing levels of Cd in the soil significantly (P <

0.05) decreased plant growth and biomass and photosynthetic pig-
ments in C. annuum without the application of EDTA and CA (Figs. 1,
2). According to the given results, increasing levels of Cd i.e., 50 and
100mM in the soil significantly (P< 0.05) decreased plant height, pri-
mary branches, secondary branches, fruit length, fruit width, fruit
fresh weight, number of fruits and fruit dry weight, chlorophyll-a,
chlorophyll-b, total chlorophyll, carotenoid content, net photosyn-
thesis, stomatal conductance and transpiration rate in C. annuum,
compared to the plants grown without the treatment of Cd in the
soil. The exogenous application of EDTA and CA was also applied to
measured various growth (Fig. 1) and photosynthetic attributes
(Fig. 2) in C. annuum grown under the elevating levels of Cd in the
soil. The application of EDTA and CA non-significantly increased plant
height, primary branches, secondary branches, fruit length, fruit
width, fruit fresh weight, number of fruits and fruit dry weight, chlo-
rophyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net
photosynthesis, stomatal conductance and transpiration rate at all
levels of Cd in the soil, compared to the plants which were grown
without the application of EDTA and CA. We have also noticed that
Cd toxicity did not significantly affect intercellular CO2 and also appli-
cation of EDTA and CA did not significantly influence intercellular CO2

in C. annuum under all levels of Cd in the soil (Fig. 2H).



Fig. 1. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on different growth-related attributes i.e., plant height (A), primary branches
(B), secondary branches (C), fruit length (D), fruit width (E), fruit fresh weight (F), number of fruits (G) and fruit dry weight (H) of pepper (Capsicum annuum L.) seedlings grown
under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean § SD (n = 4). Thus, the differences between
treatments were determined by using ANOVA, and the least significant difference test (P < 0.05) was used for multiple comparisons between treatment means where significant,
Tukey’s HSD post hoc test was used to compare the multiple comparisons of means. Different lowercase letters on the error bars indicate significant differences between the treat-
ments.
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3.2. Effect of exogenous application of EDTA and CA on oxidative stress
and antioxidant capacity under the varying levels of Cd in the soil

3.2.1. Oxidative stress indicators
Malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) ini-

tiation and electrolyte leakage (%) increased in the leaves of C. ann-
uum under the increasing Cd i.e., 50 and 100 mM in the soil medium
without EDTA and CA as compared to the plants grown in 0 mM of
Cd. The data regarding oxidative stress indicators in the leaves of C.
annuum are presented in Fig. 3. Application of EDTA and CA signifi-
cantly decreased the contents of MDA, H2O2 and EL (%) in the leaves
grown with Cd level of 100 mM under EDTA and CA application as
compared to those plants grown with 100 mM of Cd without the
application of EDTA and CA.

3.2.2. Antioxidant compounds and their relative gene expression
Various antioxidant enzymes such as superoxidase dismutase

(SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase
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(APX) in the leaves of C. annuum seedlings and their specific gene
expression such as Fe-SOD, POD, CAT, and APX and also the non-
enzymatic compounds such as phenolic, flavonoid, ascorbic acid and
anthocyanin contents were also measured in the present study. The
data regarding the activities of enzymatic antioxidants (SOD, POD,
CAT and APX) are presented in Fig. 4, and their specific gene expres-
sion such as Fe-SOD, POD, CAT, and APX are presented in Fig. 5 and
also the results regarding the compounds of non-enzymatic antioxi-
dants (phenolic, flavonoid, ascorbic acid and anthocyanin) are pre-
sented in Fig. 6. The results showed that the activities of enzymatic
antioxidants (SOD, POD, CAT and APX) and their specific gene expres-
sion such as Fe-SOD, POD, CAT, and APX and the compounds of non-
enzymatic antioxidants (phenolic, flavonoid, ascorbic acid and antho-
cyanin) were increased up to a Cd level of 100 mM in the soil. In addi-
tion, compared to the plants grown in 0 mM of Cd in the soil, the
activities of enzymatic antioxidants (SOD, POD, CAT and APX) and
their specific gene expression such as Fe-SOD, POD, CAT, and APX
and also the compounds of non-enzymatic antioxidants (phenolic,



Fig. 2. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on different photosynthetic pigments, i.e., chlorophyll-a content (A), chloro-
phyll-b content (B), total chlorophyll content (C), carotenoid content (D), net photosynthesis (E), stomatal conductance (F), transpiration rate (G), and intercellular CO2 (H) of pepper
(Capsicum annuum L.) seedlings grown under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean § SD
(n = 4). Thus, the differences between treatments were determined by using ANOVA, and the least significant difference test (P < 0.05) was used for multiple comparisons between
treatment means where significant, Tukey’s HSD post hoc test was used to compare the multiple comparisons of means. Different lowercase letters on the error bars indicate signifi-
cant differences between the treatments.
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flavonoid, ascorbic acid and anthocyanin) were increased signifi-
cantly (P < 0.05) in the plants grown in the Cd concentration of
100 mM in the soil. Results also showed that the exogenous applica-
tion of EDTA and CA non-significantly increased the activities of
enzymatic antioxidants (SOD, POD, CAT and APX) and their specific
gene expression such as Fe-SOD, POD, CAT, and APX and also the
compounds of non-enzymatic antioxidants (phenolic, flavonoid,
ascorbic acid and anthocyanin) at all levels of Cd (no Cd), 50 and
100 mM in the soil, compared to the plants which were not applied
by the EDTA and CA.

3.2.3. Sugar, proline and nutrients uptake by the plant parts
Soluble sugar, reducing sugar, non-reducing sugar, proline and

various nutrients such as calcium (Ca2+), magnesium (Mg2+), iron (Fe2
+) and phosphorus (P) contents from the roots and shoots of C. ann-
uum, were also measured in the present study under the different
levels of Cd 0 (no Cd), 50 and 100 mM in the soil which were also
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supplied with the application of EDTA and CA. The data regarding the
content of soluble sugar, reducing sugar, non-reducing sugar, proline
is presented in Fig. 7 and the data regarding the content of Ca2+, Mg2
+, Fe2+, and P from the roots and shoots of the plants are presented in
Fig. 8. Results from the present study is showing that the increasing
levels of Cd in the soil significantly (P < 0.05) decreased the contents
of nutrients (Ca2+, Mg2+, Fe2+, and P) in the roots and shoots of the
plants and also decreased the sugar content (soluble sugar, reducing
sugar, non-reducing sugar), compared to the plants which were
grown in the soil which was not treated with Cd. However, the con-
tent of proline was increased by increasing the levels of Cd in the soil,
compared to the plants which were not treated with Cd (Fig. 6H). The
application of EDTA and CA was also applied to the plants exoge-
nously and determined various sugar (Fig. 6), phenolic and nutrient
content (Fig. 7) from the shoots of the plants. Results from the pres-
ent study suggested that the application of EDTA and CA non signifi-
cantly increased sugar content (soluble sugar, reducing sugar, non-



Fig. 3. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on oxidative stress indicators, i.e., MDA content in the leaves (A), H2O2 con-
tent in the leaves (B), and EL percentage in the leaves (C) of pepper (Capsicum annuum L.) seedlings grown under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and
100mM. Values in the figures indicate just one harvest. Mean§ SD (n = 4). Thus, the differences between treatments were determined by using ANOVA, and the least significant dif-
ference test (P < 0.05) was used for multiple comparisons between treatment means where significant, Tukey’s HSD post hoc test was used to compare the multiple comparisons of
means. Different lowercase letters on the error bars indicate significant differences between the treatments.
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reducing sugar), proline in the shoots and significantly increased
nutrients (Ca2+, Mg2+, Fe2+, and P) in the roots and shoots of the
plants, compared to the plants grown without the treatment of EDTA
and CA, at all the levels of Cd in the soil.

3.3. Effect of exogenous application of EDTA and CA on organic acids
exudation and Cd uptake under the varying levels of Cd in the soil

The contents of fumaric acid, formic acid, acetic acid, citric acid,
malic acid, and oxalic acid in the roots and Cd concentration in the
roots and shoots of C. annuum grown under toxic levels of Cd in the
soil, with or without the application of EDTA and CA are presented in
Fig. 8. According to the given results, we have noticed that increasing
the concentration of Cd in the soil (50 and 100 mM) induced a signifi-
cant (P < 0.05) increased in the content of fumaric acid, formic acid,
acetic acid, citric acid, malic acid, and oxalic acid in the roots and also
Cd concentration in the roots and shoots of C. annuum, compared to
those plants, which were grown in Cd level of 0 mM in the soil.
Results also illustrated that the application of EDTA and CA decreased
the contents of fumaric acid, formic acid, acetic acid, citric acid, malic
acid, and oxalic acid in the roots while increased Cd concentration in
the roots and shoots of C. annuum, compared with those plants,
which were grown without the exogenous application with EDTA
and CA.

4. Discussion

Metal contamination of soil may pose risks and hazards to
humans and the ecosystem through: direct ingestion or contact with
contaminated soil, the food chain (soil-plant-human or soil-plant-
animal human), drinking of contaminated ground water, reduction in
food quality (safety and marketability) via phytotoxicity, reduction in
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land usability for agricultural production causing food insecurity, and
land tenure problems (Rana et al., 2020; Kamal et al., 2022; Ma et al.,
2022a). Contamination of agricultural soils with Cd has become one
of the most toxic and widespread environmental problems (Afzal et
al., 2020; Ma et al., 2022c) and Cd typically causes direct or indirect
inhibition of various physiological processes, such as respiration,
transpiration, photosynthesis, oxidative stress, cell elongation, nitro-
gen metabolism and uptake of mineral nutrition, finally resulting in
growth retardation, leaf chlorosis and reduced biomass (Rizwan et
al., 2019; Ma et al., 2022b). In addition, Cd reduces the photosynthetic
capacity of plants by devastating the enzymes of Calvin cycle and car-
bohydrate metabolism and, also, modulates the plant’s antioxidant
machinery which were found to be similar in our study the varying
levels of Cd in the soil significantly (P < 0.05) decreased plant growth
and biomass (Fig. 1) and also affects the photosynthetic machinery
(Fig. 2). Reduction in growth and biomass accumulation could also be
attributed to alterations in the ultrastructure of various plant compo-
nents under toxic levels of Cd in the soil that have direct impacts on
plant growth and yield (Singh et al., 2020; Zainab et al., 2021).

Stress conditions can disturb the dynamic equilibrium of reactive
oxygen species (ROS) production and elimination under normal
growth in plants (Yaseen et al., 2020; Rehman et al., 2021), which
promote ROS accumulation and membrane lipid peroxidation, and
disrupt the structure and function of cell membrane system (Ahmad
et al., 2018; Zafar-ul-Hye et al., 2020). High concentration of Cd in the
soil induced oxidative damage by increasing the contents of MDA,
initiation of H2O2, and increased percentage of EL which was
observed in Brassica napus (Jung et al., 2020), Arabidopsis thaliana
(Zhu et al., 2012), and Brassica juncea (Alam et al., 2020). This ROS
accumulation in plants is removed by a variety of antioxidant
enzymes such as SOD, POD, CAT, and APX (Fig. 4) and non-enzymatic
antioxidant (Fig. 6). However, the expression of specific genes, such



Fig. 4. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on enzymatic antioxidative enzymes, i.e., SOD activity in the leaves (A), POD
activity in the leaves (B), CAT activity in the leaves (C), and APX activity in the leaves (D) of pepper (Capsicum annuum L.) seedlings grown under the various levels of Cd contami-
nated soil i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean § SD (n = 4). Thus, the differences between treatments were determined by using
ANOVA, and the least significant difference test (P < 0.05) was used for multiple comparisons between treatment means where significant, Tukey’s HSD post hoc test was used to
compare the multiple comparisons of means. Different lowercase letters on the error bars indicate significant differences between the treatments.

Fig. 5. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on relative gene expression, i.e., Fe-SOD activity in the leaves (A), POD activity
in the leaves (B), CAT activity in the leaves (C), and APX activity in the leaves (D) of pepper (Capsicum annuum L.) seedlings grown under the various levels of Cd contaminated soil
i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean § SD (n = 4). Thus, the differences between treatments were determined by using ANOVA, and
the least significant difference test (P < 0.05) was used for multiple comparisons between treatment means where significant, Tukey’s HSD post hoc test was used to compare the
multiple comparisons of means. Different lowercase letters on the error bars indicate significant differences between the treatments.

374

R.M. Alshegaihi, M.F.B. Mfarrej, M.H. Saleem et al. South African Journal of Botany 159 (2023) 367�380



Fig. 6. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on osmolytes and sugars, i.e., phenolic content (A), flavonoid content (B),
ascorbic acid content (C), anthocyanin content (D), soluble sugar content (E), reducing sugar content (F), non-reducing sugar content (G), and proline content (H) of pepper (Capsi-
cum annuum L.) seedlings grown under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean § SD (n = 4).
Thus, the differences between treatments were determined by using ANOVA, and the least significant difference test (P < 0.05) was used for multiple comparisons between treat-
ment means where significant, Tukey’s HSD post hoc test was used to compare the multiple comparisons of means. Different lowercase letters on the error bars indicate significant
differences between the treatments.
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as Fe-SOD, POD, CAT, and APX under Cd stressed environment plays a
significant role in reducing Cd toxicity, which was reported in a num-
ber of studies under various plant species (Jan et al., 2019; El-Esawi
et al., 2020; Imran et al., 2020). Plants produce a variety of secondary
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metabolites such as proline, flavonoids, and phenolics that improve
tolerance against metal toxicity. Although, proline accumulation in
plant tissue/organs is a response to metal toxicity, which might be
associated with signal transduction and prevents membrane



Fig. 7. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on nutritional status, i.e., calcium content in the roots (A), and calcium con-
tent in the shoots (B), magnesium content in the roots (C), magnesium content in the shoots (D), iron content in the roots (E), iron content in the shoots (F), phosphorus content in
the roots (G) and phosphorus content in the shoots (H) of pepper (Capsicum annuum L.) seedlings grown under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and
100mM. Values in the figures indicate just one harvest. Mean§ SD (n = 4). Thus, the differences between treatments were determined by using ANOVA, and the least significant dif-
ference test (P < 0.05) was used for multiple comparisons between treatment means where significant, Tukey’s HSD post hoc test was used to compare the multiple comparisons of
means. Different lowercase letters on the error bars indicate significant differences between the treatments.
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distortion, which has been observed in many plant species (REHMAN
et al., 2020; Sakya and Prahasto, 2020).

With increasing concentrations of Cd (50 and 100 mM) in the soil,
the contents of Ca2+, Mg2+, Fe2+, and P in the roots and shoots of C.
annuum seedlings were decreased significantly (P < 0.05) when com-
pared to those plants grown without Cd addition (Figs. 7). The
decrease in essential ions accumulation in different organs of C. ann-
uum seedlings under varying Cd concentrations might also be due to
the alteration in the physiological processes such as the failure of bio-
synthesis of chlorophyll and carotenoid contents (Tanwir et al., 2015;
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Afzal et al., 2018). Under Cd toxicity, reduction in the contents of Fe2+

(Bashir et al., 2018), Mg2+ (Javed et al., 2017), P (Javed et al., 2017)
and Ca2+ (Anwar et al., 2017) were recorded. Increasing Cd levels (50
and 100 mM) in the soil exerted a strong influence on exudation of
organic acids from roots of C. annuum which probably is an adoptive
mechanism for plant survival under Cd stressed conditions (Fig. 8).
The increasing contents of organic acids in the root exudates of C.
annuum are likely to protect the plants against Cd stress and limit the
uptake of metal from roots to aboveground plant parts due to metal-
organic acid anions-complex formation (Javed et al., 2018; Saleem et



Fig. 8. Impact of exogenous application of citric acid (CA) and ethylenediaminetetraacetic Acid (EDTA) on organic acids and Cd uptake, i.e., citric acid content (A), acetic acid content
(B), malic acid content (C), oxalic acid content (D), formic acid content (E), and fumaric acid content (F) in the roots, Cd content in the roots (G), and Cd content in the shoots (H) of
pepper (Capsicum annuum L.) seedlings grown under the various levels of Cd contaminated soil i.e., 0 (no Cd), 50 and 100 mM. Values in the figures indicate just one harvest. Mean
§ SD (n = 4). Thus, the differences between treatments were determined by using ANOVA, and the least significant difference test (P < 0.05) was used for multiple comparisons
between treatment means where significant, Tukey’s HSD post hoc test was used to compare the multiple comparisons of means. Different lowercase letters on the error bars indi-
cate significant differences between the treatments.
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al., 2022). Outcomes of this study revealed that higher Cd levels (50
and 100 mM) resulted in a significant (P < 0.05) increase in the root
and shoot Cd contents C. annuum. Previously, increasing Cd contents
in soil caused a significant (P < 0.05) increase in Cd contents of plants
organs of Pfaffia glomerata (Pereira et al., 2018), Zea mays (Anwar et
al., 2017), Boehmeria nivea (Tang et al., 2015) and Linum usitatissimum
(Ali et al., 2015).

Recently, the use of organic chelators has been reported widely
acceptable because of their low cost and high degradability as
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compared to expensive and highly leachable synthetic chelators
(Chen et al., 2019; Zaheer et al., 2020). Many studies documented the
chelating potential and plant growth promoting role of CA under dif-
ferent toxic elements such as Cr (Afshan et al., 2015), Cd (Ehsan et al.,
2014), Pb (Shakoor et al., 2014), Cu (Zaheer et al., 2015) and As (Bhat
et al., 2022). The promotive role of CA in plants exposed to toxic met-
als stress is well recognized. The application of CA improved the
growth and biomass and photosynthetic pigments of C. annuum seed-
lings under Cd stress (Figs. 1 and 2). Although the application of CA is
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independent to metal stress as it increased plant growth and biomass
(even under normal condition), this might be due to increased nutri-
ent uptake and/or CA induced chelation of metals decreasing free
metal ions in plants as suggested by Zaheer et al. (2015). Moreover,
the CA application also increased photosynthetic pigments, gaseous
exchange attributes, and ultrastructure of chloroplast which is linked
with the improvement in plant growth and biomass as suggested by
Parveen et al. (2020). As suggested by Mallhi et al. (2019), improve-
ment in plant growth and biomass under toxic metal stress condition
might be due to the chelating role of CA, which helps to increase
nutrient uptake by the plant. Improvement in plant growth and bio-
mass might be accredited to the ability of CA to enhance the uptake
of essential nutrients by the formation of complexes with nutrients
(Afshan et al., 2015). In numerous studies the application of chelating
agents increased the activities of antioxidative enzymes and reduced
oxidative stress by decreased the generation of ROS production
(Najeeb et al., 2011; Maqbool et al., 2018; Saleem et al., 2020b). This
might be due to the growth promotive character of CA in assisting
the plant to recover fast from oxidative damage (Zaheer et al., 2015).
Although, the increase in Cd uptake by plants might be due to chela-
tion of Cd with CA and CA application also increased plant growth
and biomass and, consequently, the accumulation and uptake of met-
als in plants. This relative increase in Cd contents might be due to CA-
induced increase transpiration rate, which in turn increased Cd trans-
location to shoot through water movement and/or due to Cd chela-
tion (Ehsan et al., 2014; Hassan et al., 2016).

EDTA significantly increased plant growth and biomass compared
to Cd-stressed plants (Fig. 1). Application of EDTA increased plant
growth and development in Brassica napus (Habiba et al., 2015), Heli-
anthus annuus (Azhar et al., 2006) and Cicer arietinum (Ali et al.,
2017). The conversion of light energy into photochemical reactions is
more efficient under the application of EDTA in Cd-stressed plants
may also play a key role in improving growth and development (Jiang
et al., 2019; Mousavi et al., 2021). (Kanwal et al., 2014) also reported
that application of EDTA reduced oxidative stress under high concen-
tration of Pb as indicated by decrease in MDA contents which showed
similar trends with our study (Fig. 3). Moreover, increase in photo-
synthetic rate may be due to the protective role of EDTA on photo-
synthetic machinery by reducing the metal free ions and increase the
activities of antioxidants which ultimately reduced oxidative stress
in C. annuum (Chen and Cutright, 2001; Lu et al., 2017). In the present
experiment, increasing growth, biomass, gaseous exchange attributes
(Figs. 1, 2), and alleviates oxidative stress (Fig. 4) is directly linked
with the activities of antioxidants (Figs. 4�6) with the application of
EDTA under elevating levels of Cd in the nutrient solution.
5. Conclusion

On the basis of these findings, it can be concluded that the nega-
tive impact of Cd toxicity can be overcome by the external application
of EDTA and CA. Our results depict that Cd toxicity induced severe
metal toxicity in C. annuum by increasing the generation of ROS in
the form of oxidative stress and also increasing the concentration of
Cd in the roots and shoots of the plants. Furthermore, Cd toxicity also
increased organic acid exudation and imbalance in the nutritional
status of the plants, which ultimately decrease plant growth, yield,
and photosynthetic efficiency. Hence, Cd toxicity was eliminated by
the external application of EDTA and CA, which also decreased the Cd
concentration in the plant tissues, degenerated ROS, and organic acid
exudation, but increased the activities of antioxidants and their gene
expression and essential nutrients in the plants. Therefore, long-term
field studies should be executed to draw parallels amongst plants/
crops root exudations, metal stress, nutrient fertigation regimes,
nutrient mobility patterns, and plant growth in order to gain insights
into the underlying mechanisms.
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